Hierarchical priors for bias parameters in Bayesian sensitivity analysis for unmeasured confounding.

نویسندگان

  • Lawrence C McCandless
  • Paul Gustafson
  • Adrian R Levy
  • Sylvia Richardson
چکیده

Recent years have witnessed new innovation in Bayesian techniques to adjust for unmeasured confounding. A challenge with existing methods is that the user is often required to elicit prior distributions for high-dimensional parameters that model competing bias scenarios. This can render the methods unwieldy. In this paper, we propose a novel methodology to adjust for unmeasured confounding that derives default priors for bias parameters for observational studies with binary covariates. The confounding effects of measured and unmeasured variables are treated as exchangeable within a Bayesian framework. We model the joint distribution of covariates by using a log-linear model with pairwise interaction terms. Hierarchical priors constrain the magnitude and direction of bias parameters. An appealing property of the method is that the conditional distribution of the unmeasured confounder follows a logistic model, giving a simple equivalence with previously proposed methods. We apply the method in a data example from pharmacoepidemiology and explore the impact of different priors for bias parameters on the analysis results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of and Adjustment for Multiple Unmeasured Confounding Variables in Logistic Regression by Bayesian Structural Equation Modeling

Aim: To compare the bias magnitude between logistic regression and Bayesian structural equation modeling (SEM) in a small sample with strong unmeasured confounding from two correlated latent variables. Study Design: Statistical analysis of artificial data. Methodology: Artificial binary data with above characteristics were generated and analyzed by logistic regression and Bayesian SEM over a pl...

متن کامل

Bayesian sensitivity analysis for unmeasured confounding in observational studies.

We consider Bayesian sensitivity analysis for unmeasured confounding in observational studies where the association between a binary exposure, binary response, measured confounders and a single binary unmeasured confounder can be formulated using logistic regression models. A model for unmeasured confounding is presented along with a family of prior distributions that model beliefs about a poss...

متن کامل

A flexible, interpretable framework for assessing sensitivity to unmeasured confounding

When estimating causal effects, unmeasured confounding and model misspecification are both potential sources of bias. We propose a method to simultaneously address both issues in the form of a semi-parametric sensitivity analysis. In particular, our approach incorporates Bayesian Additive Regression Trees into a two-parameter sensitivity analysis strategy that assesses sensitivity of posterior ...

متن کامل

Sensitivity analyses for unmeasured confounding assuming a marginal structural model for repeated measures.

Robins introduced marginal structural models (MSMs) and inverse probability of treatment weighted (IPTW) estimators for the causal effect of a time-varying treatment on the mean of repeated measures. We investigate the sensitivity of IPTW estimators to unmeasured confounding. We examine a new framework for sensitivity analyses based on a nonidentifiable model that quantifies unmeasured confound...

متن کامل

Detection of Unknown Confounders by Bayesian Confirmatory Factor Analysis

Artificial data with known covariance structure was used to directly test confounding hypothesis using Bayesian confirmatory factor analysis with small variance informative priors. The priors were derived from two extreme scenarios of no versus maximum confounding via exposure variables. Large (N=5000) and small (N=100) sample analyses were performed for both continuous and binary variable mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics in medicine

دوره 31 4  شماره 

صفحات  -

تاریخ انتشار 2012